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1. Introduction.-The identification of those connected and locally connected
spaces in which the intersection of every pair (or collection) of connected sets is
connected (possibly empty) is of importance in the study and use of unicoherence.
Solving this problem involves a restudy and extension to general spaces of
many of the results about cut points, conjugacy of point pairs, structure of
locally connected spaces relative to its cut points, and cyclic elements which are
well known2 for separable metric spaces. This will be accomplished in the
present paper. In a general way it may be said that results not involving count-
ability extend to all connected and locally connected Hausdorff spaces, indeed
to spaces satisfying a greatly weakened Hausdorff-type axiom (see §3 below).
For spaces not satisfying this axiom, little if anything of significance can be
proved without restricting the space in some other way (e.g., see §2).

Let M be any connected T1 space, and for each pair of distinct points a,b
eM let E(a,b) be the set of all points in M, each of which separates a and b in M.
For each x e E(a,b) we choose a definite separation

M - X = Ma(X) + Mb(x)

of M - x between a and b, a e Ma(), b e Mb(x). The set E(a,b) is ordered by
the definition x < y if and only if x e Ma(y). Equivalently, x < y, provided that
y e Mb(x). Also if we set a < x and x < b and a < b for all x e E(a,b), we have
an ordering of E(a,b) + a + b. This ordering is natural in the sense that for
any x in the set, the set of all its predecessors is open, as is also the set of all its
successors.
Throughout this paper all spaces are assumed to be T1 spaces. The bound-

ary of an open set U is designated by Fr(U), and a connected open set is called
a region.

2. Existence of Non-Cut Points.-As is well known, a connected space may
consist entirely of cut points or, likewise, entirely of non-cut points. However,
every nondegenerate continuum (= compact connected metric space) must
have at least two non-cut points.1 Using the maximality form of the axiom of
choice, we include next a proof of this latter conclusion for arbitrary compact
connected nondegenerate T1 spaces.
Every nondegenerate compact connected T1 space M has at least two non-cut

points.
Proof: Suppose not. Take a e M so that a is a non-cut point of M ifM has

one such point. For each x e M - a we get a separation M - x = A (x) +
B(x), where A(x) v a. Define C(x) = A(x) + x for each x e M -a. We
note that each C(x) is a connected closed proper subset of M. Let the sets
{C(x) } be partially ordered by inclusion. Let W be a maximal simply
ordered chain of sets in I C(x) }.
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Then W = U C, CeW, is connected, since each C(x) contains a. We assert that
W = M. For if there exists x eM - W, we have W C A (x); and if y e B(x),
C(y) = A(y) + ynA(x) + xDW. This is impossible since W is a maximal
chain, whereas W + {C(y) I would be a chain properly containing W. Thus
W = M. Further, each p e M is interior to some C(x) in W. For take p E
C(x) e 'W. If p $ x, this is true because A(x) is open; and for p = x we need
only take a C(y) in W which meets B(x) and we have x e C(y) and x $ y so
that x eA (y).

However, no finite subcollection of 'W can cover M, because if so, the largest
element in this subcollection would be identical with W and thus with M,
whereas each set in W is a proper subset of M. This contradicts the compact-
ness of M.

3. Conjugacy-Axiom Hi.-Let M be a connected and locally connected T,
space. Two points a,b e M are conjugate provided that no point of M separates
them in M, i.e., E(a,b) = (. Also a and b are separable or inseparable according
as there do or do not exist two disjoint open sets about a and b, respectively.
AXIOM H1. For any two distinct inseparable points in the boundary of a region

R there exists a point ofR which is conjugate to both of these points.
Remark: Since there are no inseparable point pairs in a Hausdorff space,

every Hausdorff space satisfies axiom H1. However, there are many H1 spaces
which are not Hausdorff spaces. For example, any infinite set in which the
empty set and sets with finite complements are defined as open sets is such a
space. This space is also connected and locally connected.
A T1 space satisfying Axiom H1 will be called an H1 space.
THEOREM H1. For any two distinct conjugate points in the boundary of a region R

in a connected, locally connected, H1 space M three exists a point of R conjugate to
each of these points.

Proof: Let a and b be two such points. By Axiom H1 we may assume a and b
separable so that there exist disjoint regions Ra and Rb about a and b, respec-
tively. Take q e R Ra and let Q be the component of R -RR Rb containing q.
Then R contains a boundary point p of Q and p e Rb. Then p is conjugate to
both a and b. For suppose there is a separation M - x = M, + Mo where
p e M, and (a + b) - Mo 5 (. Since a and b are conjugate, we must have a +
b C Mo + x. Thus x lies in each of the connected sets Rb + p and Ra + Q +
p. This is impossible as these sets meet only in p and p $ x.

4. Closedness and Compactness of E(a,b) + a + b.-These properties of this
set are well known in case M is connected, locally connected separable, and
metric.2 However, in non-Hausdorff spaces they may fail to hold.
EXAMPLE. There exists a connected and locally connected perfectly separable T1

space containing a pair of points a and b for which E(a,b) + a + b is neither
closed nor compact.

Let M consist of the graph G of the function y = sin 1/x together with the two
points p = (0,1), q = (0,-1). Let a basis for the open sets in M consist of all
ordinary open connected segments on G between points with rational abscissas
of the same sign together with the sets obtained by adjoining p (resp. q) to the
part of G between X = -r and x = r for each positive rational r. It is readily
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verified that M has all our required properties. If a and b are taken on G on
opposite sides of x = 0, neither p nor q separates a and b so that E(a,b) + a +
b is not closed; and it is equally apparent that it is also noncompact.
THEOREM 4.1. In a connected and locally connected H1 space M, every set K =

E(a,b) + a + b is closed.
Proof: Suppose there is a point p EK - K. For each x e E(a,b) take a defi-

nite separation M - x = Ma(X) + Mb(x) between a and b. Define Ea to be
the set of all x E E(a,b) such that p E Mb(x) and Eb as all x e E(a,b) with p E

Ma(x). Then p is a limit point of at least one of the sets Ea and Eb. The two
cases are alike, so we suppose p e Ea. Then ifR = U Ma(X), XeEa, R is open. It
is also connected because for each x e Ea there is a y e Ea with y e Ml(x) so that
the connected set Ma(X) + x lies in Ma(y) and thus in R.

Since p is not in K and thus does not separate a and b, the boundary Fr(R) of
R contains at least one point q in addition to p. Now let r be any point what-
ever of R. Then r e Ma(x) for some x E Ea. Since p and q both lie in Mb(x)
and Mb (x) + x is connected and does not contain r, it follows (i) that x separates
r from both p and q, and (ii) that r does not separate p and q in M. Since any
point separating p from q would necessarily lie in R, it follows by (ii) that p and
q are conjugated. However, by (i) no point whatever of R can be conjugate
to both p and q. This contradicts Theorem H1 of §3.
THEOREM 4.2. In a connected and locally connected T1 space M, every set K =

E(a,b) + a + b which is closed is compact.
Proof: Obviously we may suppose E(a,b) $ cb. Let 9 be any open covering

of K. For each x e K we denote the "segment" E(a,x) + a + x of E(a,b) + a
+ b by ax. Let Ka be the set of all x E K such that ax is covered by some finite
subcollection of 9. We will show thatK - Ka = 4P. Suppose not.
Then Ka has a last point p. In case Ka = a, obviously a is this last point.

Otherwise, the union Ua of all sets Ma(x) for x e Ka - a is a nonempty, open
proper subset of M. Thus some p e M - Ua is a limit point of Ua. Now if p
were not in K, a region R, about p not meeting the closed set K would meet
some Ma(X) in Ua and thus would lie wholly in Ma(X) so that p would be in Ua.
Thus p E K. Let G be a set of 9 containing p and let Q be a region containing p
and lying in G. Then Q meets some set Ma(x) in Ua and thus contains x because
either p = x or x separates Ma(x) and p in M. Now ax is covered by a finite
subcollection G1 of 9; and if G is adjoined to G1, we get a finite subcollection
of 9 covering ap because any point of ap - ax - p separates x and p in M and
thus lies in G. Hence p e Ka; and since any other point x of Ka - a lies in the
connected set Ma(x) + x which is contained in Ma(p), p must be the last point
of Ka.

It follows similarly that K -Ka has a first point q. This is obvious if b =
K - Ka. Otherwise the union Ub of all sets Mb(x) for x e K - Ka - b is a
nonempty open proper subset of M and the existence of q follows by essentially
the same argument as just given for that of p.
However, this situation involves a contradiction. For clearly a set of 9

containing q adjoined to a finite subcollection of covering ap = Ka gives a
finite collection in 9 covering aq contrary to qE K - Ka.
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Combining Theorems (4.1) and (4.2), we get
THEOREM 4.3. In a connected and locally connected H1 space, every set E(a,b) +

a + b is closed and compact.
5. A-Sets.-A closed set A in a connected T1 space X is an A-set provided

that X - A is the union of a collection of open sets each bounded by a single
point of A.
REMARK. If an A-set A meets each of two interesecting connected sets M and N,

then it meets their intersection.
For let x eM N. If x is not in A, it is in an open set Q inX - A whose bound-

ary is a single point p of A. Both M and N must contain p since each meets
both x and A.
THEOREM 5.1 (FINITE INTERSECTION THEOREM). The intersection of any

two A-sets is either empty or an A-set.
Proof: Let A and B be A-sets in X whereX is connected and ACB $ A. De-

note the open sets with single point boundaries covering X - A and X - B,
respectively, by { Q } and IR}.
Now for any x not in A -B either x e X - A or x e X - B, say x e X - A.

Let Q_ be a set in { Q } containing x with boundary point q in A. If q e B, we
set Q. = P. If not, by the Remark, B does not meet the connectedwset Qx + q
and thus some set Rq of I R} contains this set. Let r be the boundary point of
Rq in B. Since A meets both R, + r and X - Rq, by the Remark it must con-
tain r. Thus if in this case we set Re = P, then in either case P is an open set
in X - A B containing x and whose boundary is a single point of A-B. Thus
A *B is an A-set.
REMARK. In a connected and locally connected T1 space M a nonempty closed

set A is an A-set if and only if each component ofM - A has exactly one boundary
point.
THEOREM 5.2 (INTERSECTION THEOREM). In a connected and locally connected

H1 space M, any intersection of A-sets is either empty or an A-set.
Proof: Let A = n A,, where each Ax is an A-set and A $ b. Take a com-

ponent Q of X - A. Suppose contrary to our theorem that Q has two distinct
boundary points p and q in A. Let r be any point whatever of Q. For some X
we have r e X - Ax. Let Q, be the component of X - A containing r and let
x be its boundary point in Ax. Then since p + q lies in the connected set M -
Qr whereas r e Qr, we have that r cannot separate p and q in M and that r is not
conjugate to both p and q. Since any point separating p and q would lie in Q,
it follows that p and q are conjugate and that no point of Q is conjugate to both
of them. This contradicts Theorem H1 of §3.

Note: The general intersection theorem does not hold in the absence of the
local connectedness condition on the space. For let X be the graph of the func-
tion y = sin 1/x together with the closed interval A of the y-axis from -1 to 1
with the usual topology of the plane. Then for each a > 0 the part of X with
abscissas in the closed interval from -a to a is an A-set, whereas the intersection
A of all these sets clearly is not an A-set.

Likewise the theorem fails to hold if the H1 condition is omitted. For ifM is
the space described in the example of §4, again for each a > 0 the part of M
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between -a and a is an A-set but the intersection of all these sets is not an A-set.
THEOREM 5.3. If A is an A-set in a connected and locally connected T1 space

Al, then for any connected set Z whatever in M, A Z is connected (possibly empty).
For suppose we have a separation

A-Z = Al + A2.

Then Let Z, = A, + Qr-Z, Z2 = A2 + Q2.Z where Qi and Q2 are the unions,
respectively, of all components of M - A with boundary point in Al and A2.
It is readily verified that Z = Zi + Z2 and that this is a separation, contrary to
connectedness of Z.
COROLLARY. In a connected and locally connected T1 space M, every A-set is

connected and locally connected.
Remark: This theorem and corollary do not hold without local connectedness

on M. For let the space X consist of the union of two sequences of intervals in
3-space, one of these consisting of intervals on the xy plane joining the origin a to
the points (1,1/n,0), n = 1, 2, .. ., and the other of intervals in the xz plane
joining the point b = (1,0,0] to the point (0,0,1/n), n = 1, 2, .... The set
consisting of the points a and b alone is an A-set in this connected space.

6. Chains C(a,b)-Eo-Sets.-Throughout this section N will denote a con-
nected and locally connected H1 space. If a and b are distinct conjugate points
in N, C(a,b) will denote the set of all points of N which are conjugate to both a
and b. (In general, C(a,b) will denote the intersection of all A-sets in N con-
taining a + b. It will be shown in §7 that this set is identical with C(a,b) as
just defined in case a and b are conjugate.) A connected nondegenerate subset
of N which has no cut point and is maximal in M relative to these properties
will be called an E0-set.
THEOREM 6.1. Every set C(a,b) isanA-set.
Proof: If z e N - C(a,b), z fails to be conjugate to at least one of the points

a and b, say to a. Thus there is a separation N - x = N, + Na between z and
a for some x e N. Since obviously Nap C(a,b) = 4i and N, is open, it follows
that C(a,b) is closed.
Now let R be any component of N -C(a,b). Suppose, contrary to our con.-

clusion, that R has two distinct boundary points p and q in C(a,b). Then let
r be any point whatever of R. There exists a separation

N - x = N, + No

for some x e N where r e N, and (a + b) -No $ 4, because r is not in C(a,b).
Then since p,q e C(a,b) we must have

p + q + a + b C C(a,b) C No + x.

Accordingly r does not separate p and q and r is not conjugate to both p and q.
Since r is an arbitrary point of R, p and q must be conjugate and yet no point
ofR is conjugate to them both. This is contrary to Theorem H1 of §3.
COROLLARY. Every set C(a,b) inN is connected and locally connected.
THEOREM 6.2. Every set C(a,b) in N (a and b distinct conjugate points) is an
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Eo-set. Conversely, every Eo-set E is identical with C(a,b) for any two distinct
points a,b e E.

Proof: To show that C(a,b) has no cut point, let x e C(a,b). Then C(a,b)
- x must be in some single component Q of N - x since each of its points is
conjugate to both a and b. Thus

C(a,b) - x = Q.C(a,b),

and the set on the right is connected by Theorems 6.1 and 5.3. Since any
connected set in N properly containing C(a,b) meets some component of N -
C(a,b) and thus has a cut point, it follows that C(a,b) is an Eo-set.
Now let E be any Eo-set and take any two distinct points a,b e E. Then

clearly E C C(a,b) since any two points in E are conjugate. Thus since by
the above C(a,b) is an Eo-set, we haveE = C(a,b).
COROLLARY. If a and b are distinct conjugate points of N, C(a,b) is uniquely

determined by any pair of its distinct points. Any two such sets C(a,b) (or Eo-
sets) have at most one common point.

Note: The Eo-sets, now identified with the sets C(a,b) for a and b conjugate
points, will be referred to as the true cyclic elements of N.

7. Cyclic Chains.-Again in this section N will denote a connected and
locally connected H1 space. For any two points a and b of N, the cyclic chain
C(a,b) is the intersection of all A-sets in N containing a + b. Since by §5,
C(a,b) is an A-set, it may be called the least A-set containing a + b. We note
also that in case a and b are distinct and conjugate, C(a,b) is a + b identical with
the set C(a,b) as defined in §6, since every A-set containing a + b must contain
all of C(a,b) as defined in §6 because a + b has no cut point by Theorem 6.2.
THEOREM 7.1. For any two points a,b cN, we have

C(a,b) = E(a,b) + a + b + C,

where C is the union of all true cyclic elements (= Eo-sets) ofN each meeting E(a,b)
+ a + b in exactly two points.
Proof: Let A and B denote the sets on the left and right, respectively, of this

relation. To show A = B we prove that (i) B is an A-set (so that B D A), and
(ii) A v B.
To prove (i) we first show that B is closed. Suppose that there exists p E

B- B. Since E(a,b) + a + b is closed, there is a region R about p not meeting
E(a,b) + a + b. Then R meets some pair E1,E2 of distinct Eo-sets in B. How-
ever, since E1, E2 is at most one point, E1 + E2 contains at least three distinct
points x, y, z of E(a,b) + a + b and we may suppose these ordered so that y
separates x and z in N. Since y is not in R, this clearly is impossible because El
+ E2 - y + R is connected. Thus B is closed. It remains to show that if Q
is any component of N - B, Fr(Q) is a single point. If, on the contrary, Fr(Q)
contained two distinct points p and q, p and q cannot be conjugate because Q
would be a component of the complement of the Eo-set determined by p and q.
Thus some point x separates p and q. However, x would then separate a and b
and be in E(a,b) since otherwise it would separate either p or q from a + b,
which is clearly impossible. Thus we have a contradiction. This proves (i).
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To prove (ii), note first that A D E(a,b) + a + b since A is connected. Also
if E is an E0-set in B, it must be in A because it meets A in at least two distinct
points and A is an A-set. Otherwise the boundary point of any component of
N - a meetingE would separate E.
COROLLARY 7.2. Iffor two points, a,b e N, no two points of the set K = E(a,b)

+ a + b are conjugate, then C(a,b) = K. Thus K is a compact connected and
locally connected Hausdorff space such that every point ofK - a - b separates a and
bin K.
Thus K is a "simple arc" from a to b in the usual sense except that it may not

be separable. Indeed K will be homeomorphic with the unit interval if and only
if it is separable.

8. An Example.-In order to illustrate the great generality of the spaces to
which the structure theory developed above is applicable, and at the same time
to show that the usual countability results do not hold in the absence of a separa-
bility assumption, we describe next an example of interest.
The space X will consist of the points of a torus T in E3 and we make use of a

toral coordinate system (u,v) on T. 0 < u,v < 2ir as well as of the Euclidean dis-
tance or vector length Ix - y in E3. For any two points x = (uv) and y =
(u',v') on T let xo and yo be the points (u,0) and (u',0), respectively, of T. We
then define a metric p(x,y) inX by the equations:

p(x,y) = jx-yl, if u = u' or if v =v' = 0;
and

p(x,y) = Ix - xol + Ixo - yof + Iyo - y!, otherwise.

It is readily verified that with this distance function X is a connected and lo-
cally connected metric space. Also X contains isometrically the circle C: v = 0
and each of the circles C,: u = X for 0 < X < 27r. Further,

(1) Each of the circles C and Co, 0 < X < 27r, is a true cyclic element of X.
(2) Each point of C is a cut point of X, cutting it into exactly two compo-

nents.
(3) No proper subarc of C is an A-set in X even though it is a continuum of

cut points of X.
(4) For each X, 0 < X < 27r, C, - (X,O) is an open set.
(5) Every point ofX is a local cut point of X.
9. The Connected Intersection Property.-We can now give a quick answer to

the identification question raised in the introduction, at least insofar as it applies
to Hausdorff spaces.
THEOREM 9. 1. In order that a connected and locally connected topological

space M be a Hausdorff space in which the intersection of every pair (indeed every
collection) of connected sets is connected, it is necessary and sufficient that no two
distinct points ofM be conjugate.

If no two points ofM are conjugate, then for a,b e M some x e M gives a sepa-
ration M - x = Ma + Mb between a and b with Ma and Mb open. Thus M
is a Hausdorff space. Also for any connected set N in M and any pair of points
a,b e N we have K = C(a,b) = E(a,b) + a + b C N; and by (7.2), K is con-
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nected and is a type of "simple arc" as there described. Thus if 9T = {Nx}
is any collection of connected sets in M, for any two points a,b e N = f Nx we
have K = C(a,b) C N for every X so that K C N. Thus N is not only connected
but is "arcwise connected" in the above sense.
On the other hand, suppose now that M is a Hausdorff space containing a pair

of distinct conjugate points a and b, where M is also connected and locally
connected. Then by §6, C(a,b) = E is a nondegenerate connected and locally
connected set having no cut point. Let R be a region in E such that there exists
a point x in E -R. Then if Q is the component of E - P containing x, Q must
have at least two distinct boundary points p and q in P, since otherwise E would
have a cut point. Then R and Q + p + q are connected sets in M meeting in
the disconnected set p + q. Thus we have shown that if each pair of con-
nected sets in M has a connected intersection, then no two distinct points of M
can be conjugate.
COROLLARY 9.2. If the intersection of every pair of connected sets in a con-

nected and locally connected Hausdorff space is connected, the same is true of the
intersection of an arbitrary collection of connected sets in this space.

Concerning intersections of arbitrary collections of connected sets, we have at
once that in a connected and locally connected T1 space M, if the intersection of
every collection of connected sets in M is connected, M has no pair of distinct
conjugate points andM is a Hausdorff space.
To prove this, suppose a and b are distinct conjugate points in M. Then for

each x e M - a - b, a and b lie together in a single component Q, of M - x.
Since clearly Q = n Q, = a + b, Q fails to be connected.
Combining this conclusion with Corollary 9.2, we get
THEOREM 9.3. In order that the intersection of an arbitrary collection of con-

nected sets in a connected and locally connected T1 space be connected, it is necessary
and sufficient that E(x,y) = 4for every pair x,y e M.

Note: Of course, either property implies thatM is a Hausdorff space.
Also we note that the results of this section do not hold without the local

connectedness assumption. For there exists a connected subset M of the plane
with E(x,y) # 4for all x,y eM but with E(a,b) + a + b not connected for a pair a,b
in M. Also M contains two connected subsets whose intersection is not connected.
To see this, let K be the union of the closed interval from a = (0,0) to (1,0)
and the open interval from (1,1) to (2,1) = b together with the end point b.
Then let Tn be the closed interval from (1 + 1/n,0) to (1 + 1/n,1), n = 1,2,
... and let M = K + U Tn. ClearlyM meets all our conditions and E(a,b)
+ a + b = K is not connected. Also the connected subsets M1 = K + U Tn,
n odd, and M2 = K + U Tn, n even, meet in exactly the disconnected set K.
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